9 文章
“您总共消费了12.95美元。”一家当地超市的收银员说道。我取出钱包,熟练地在POS机终端上轻轻一扫,很快就听到了哔的一声 – 瞧!–交易成功了! 免触式银行卡实在是太方便了。有了它,你再也不需要刷卡、记住PIN码和用笔签字,而且也不需要费力地掏出钱包、寻找现金或者从口袋的深处摸索硬币。只需一扫–即可轻松完成支付。 收银员同样也乐意使用免触支付方式:不仅加快了付款流程速度,同时还提高了收银员的顾客处理量,而这正是公认的所有零售过程的瓶颈。 然而,其易用性也让人们不禁怀疑起自己卡内的资金是否也同样容易被盗走。犯罪分子是否会暗中用读卡器对你的口袋轻轻一扫,就将你存在卡内的所有资金偷个干净? 为了查明真相,我研究了大量来自黑客会议的报告并和许多银行代表就这一问题进行探讨。他们的反馈无一例外都相当积极和正面,但并非表示毫无缺陷。 范围 免触式卡采用近场通信(一种基于无线射频识别的技术)方式运行。卡内集成有微型芯片和天线,使用13.56 MHz频率范围,可对POS机终端的请求进行回应。不同支付系统使用各自的标准,包括:维萨的payWave、万事达的PayPass和美国运通的ExpressPay等。但所有这些系统均采用了相同的方法及核心技术。 NFC的数据传输距离极短–不足一英寸。因此,你完全可以自己筑牢第一道安全防线。基本上来说,需要将读卡器和卡片凑得非常非常近才有可能扫描到,因此要想使用读卡器暗中扫卡的难度可谓相当之高。 同时,商家也可以安装专门定制的读卡器,可使扫描的距离更长。例如,来自萨里大学的研究人员就展示了一种紧凑型扫描器,能在80厘米的距离内读取NFC数据。 此类装置可向广泛运用于公共交通、商铺、机场和其它’人群聚集’场所的免触卡发送请求。在许多国家,NFC兼容卡可谓相当普及。因此在人流聚集的地方,许多人都可能会成为犯罪分子实施NFC攻击的受害人。 最终,即使在没有定制扫描器或近距离接触的情况下,免触卡使用者也可能会遭受资金莫名被盗的损失。西班牙黑客Ricardo Rodrigues和Jose Villa发明了一种简便的’消除距离障碍’方法,并在Hack in the Box大会上进行了演示。 图像来源: Practical Experiences on NFC Relay Attacks with Android 如今绝大多数的智能手机均配备有NFC组件,且手机通常都放在离钱包很近的地方–比方说,手提袋或口袋内。Rodrigues和Villa设计出一种安卓木马病毒概念,能将目标智能手机信号转到一种类似于NFC转调器的装置上。 一旦受感染手机放在和免触卡很近的位置,就可能发出向网络攻击者执行交易的信号。骗子随后激活常规的POS机终端,然后将启用NFC的智能手机靠近终端。如此,在没有真正扫卡的情况下,类似于’桥’的一种连接在NFC和NFC终端之间建立。
从植入生物芯片这一刻起,我就反复问自己近乎莎士比亚式的问题:”一旦我决定成为一个生物机器人,我的日常生活将如何发生改变?对自身进行现代化改造又有何意义?
今天,我非常乐意以1001种不同方式为你们一一解答,每天我都能想出各种各样的使用情景,且数量呈指数级增长。下面我将与你们一同分享其中最具现实性且可行的使用情景。
自从亲身参与生物芯片试验以来,最令我感到失望的可谓是苹果对于NFC(近场通信)技术的态度。或者更直接地说,苹果公司妄图夺取在其平台使用NFC技术的控制权。 每一部iPhone 6手机均内置有NFC芯片,但除了苹果自身以外不允许任何其他第三方开发者使用,因此也无法针对苹果的NFC开发第三方应用程序。苹果对此的解释可谓意料之中:来自库比蒂诺(苹果总部)的家伙们积极推广其拥有专利的Apple Pay免触支付服务,并使用这一简单的技巧以避免任何可能威胁到其新平台的竞争。在iPhone 6刚刚推出之际,我即了解到了这一情况。但对于植入手内芯片的话,这完全又是一回事了。正如奥斯卡•王尔德(Oscar Wilde)所说的: “梦想家只能在月光下找到自己的路,他的惩罚是第一个看见黎明。” 未来即使一流的生物芯片技术都无法适用于所有人 在偶然发现我手内植入的微芯片无法与我的iPhone手机交互后,我不得不接受这样一个严酷的事实:未来即使一流的生物芯片技术都无法适用于所有人。此外,还有很大可能被用于操控用户。 如今,物联网正蓬勃发展,而专为这一理念而构建的基础设施也正在加紧部署,其中包括但不限于平台、协议和标准。就这一点看来,’先来先得’的规则在这里完全适用。那些刚好目前正在高效开发或与其他公司合作开发这一技术的公司而言,将获得抢先起步的优势,并将其他竞争对手远远甩在身后。没有一家公司将愿意与他人分享这一无可匹敌的优势。 事实上,如今的高科技巨头们并非是想着如何重新定义市场:而是设法”驯服”消费者,并牢牢地将自身产品与用户捆绑,从而占据更大的市场份额。 当然对于一名普通消费者而言,并不会对此关心太多:如果这个不适合的话,就换另一个好了。但对于我自己以及未来将装备更加完美生物和神经植入芯片的仿生人而言将非常关心这一问题–因为这不再是仅仅换一个那么简单。 因此,如果在不久的将来,地铁内的自动控制化认证系统可以与植入我体内的生物芯片兼容,但是公交车站忽然决定部署另一种类型的闸道系统,我将不得不(听起来有些奇怪)决定选择以后应该乘坐哪一种公共交通。 我甚至还没有提到跨境旅行的问题,以及一旦本国居民碰巧与另一国的基础设施’无法兼容’又该怎么办。可能我有意夸大了这些潜在问题的规模性,但我希望你们能明白我想要表达的意思。 为了进行试验,我使用了一部安卓智能手机(HTC One M8)和一部Windows智能手机(Nokia Lumia 1020) 植入生物微芯片的时间越长,我对于未来的展望也更加谨慎。我们将妖怪从瓶子里放出来,但却未准备好迎接伴随而来的结果。为了改变这一状况,我们需要在各个层面付出巨大的努力,包括最高层面的决策。就在我设法利用目前可从Google Play下载的NFC应用程序进行试验时,我突然就有了这样的想法,但却受制于安卓基础设施。 芯片本身运行完美,绝无差错:使用方便且不会产生任何故障或延迟。智能手机却是另一回事了。我再一次建议Google安卓团队应该反复设计在NFC应用程序内使用的代码。有时候,在对芯片内存进行一系列的读/写操作后,智能手机则完全停止对芯片的识别并需要重新启动。有时候,NFC应用程序会卡住或甚至终止运行。换句话说,这一技术目前还相当不成熟(不成熟的地方遍布各个方面)。 但我们今天所要介绍的是关于一个十分重要的使用案例:通过生物芯片解锁智能手机。在试验过程中所发生的种种事情进一步加深了我的担忧。 为了试验的目的在这里我安装了一款小型应用程序— TapUnlock: 我通过对植入我手内的生物芯片进行编程,使得每次触碰智能手机后即可让屏幕自动解锁(例如,从手中拿走时)。这意味着在这种情况下,传统的密码被一种独一无二的密钥所取代,而该密钥却保存在植入你皮肤下的芯片内。我对这一简便且优雅的方法激动不已(尽管只是第一天): 但随后应用程序就卡住了,而且…好吧,可能是设置时出问题了(快速分析后证实包含所有已用密钥的文件奔溃了)。 原因,其实无关紧要。问题的关键是智能手机可能无法进行这样的操作,因为没有要求输入密码就无法解锁。没有一种可替代方法可解锁屏幕,就算重启也无济于事。最终,我手上的只是一块毫无用处的塑料而已。而现在我们找到了一种极具开拓性的方法:可以轻松绕过这一保护措施!你无需是一名黑客–你唯一必须掌握的技巧就是对现代手机操作系统的原理有所了解(这里指的是安卓系统)。安卓就其本身而言是一种相对安全的操作系统,主要原因是不允许第三方开发者篡改其内核。 而现在我们找到了一种极具开拓性的方法:可以轻松绕过这一保护措施!你无需是一名黑客–你唯一必须掌握的技巧就是对现代手机操作系统的原理有所了解(这里指的是安卓系统)。安卓就其本身而言是一种相对安全的操作系统,主要原因是不允许第三方开发者篡改其内核。 通过对开发进程和标准的完全控制,Google可以确保其内核以及本地应用程序的稳定性。但对于第三方开发者,系统总是保持警惕状态,这也是为什么Google允许用户删除任何存在延迟、bug以及烦人的应用程序的原因。
于本月初在巴塞罗那举办的世界移动通信大会上,安卓智能手机巨头三星公司发布了其最新支付平台- Samsung Pay。就其名字而言,很容易让人们联想到三星在移动支付平台领域的最大竞争对手- Apple Pay。然而Samsung Pay具备Apple Pay所没有的优势:磁力安全传输技术(MST)。 MST技术事实上是由一家叫做”LoopPay”的公司开发的。在2月中旬,三星悄悄地收购了LoopPay。Apple Pay的使用范围相对较小,仅限于安装了启用近场通信的销售点终端的商户,而相比之下,Samsung Pay却能够与现有的磁条阅读销售点系统进行交互。当然,磁条阅读器覆盖了全美几乎大多数的支付终端,而芯片密码(EMV)的普及率相对落后。据报道,Samsung Pay同样也能在NFC(近场通信)环境下使用,但三星公司对这一新的支付应用程序仍然三缄其口。 在卡巴斯基每日中文博客中,我们的讨论重点并非是永无停息的苹果与三星的”世纪大战”,而是主要关注于任何新推出的–以及可能流行的–支付平台。有关MST安全或Samsung Pay工作原理方面的研究文章目前并不太多,因此我们只能将目光转到LoopPay,看看这家公司是否曾谈及过其内置于Samsung Pay的该项技术。 首先,MST通过一个感应线圈产生动态磁场,并可根据用户规定的时限改变。磁条阅读器—就如同你刷信用卡或借记卡时所用的磁条—如果你的移动设备距离阅读器3英寸范围内,将能识别出磁场。 和传统信用卡或借记卡一样,磁场内包括了你的支付信息。只有在用户选择发送支付信息时磁场才会存在,且一旦移动设备与阅读器的距离超出3英寸的话,磁场将会自动消失。这意味着攻击者必须距离支付过程非常非常近才有可能窃取支付数据。目前尚不清楚该技术是否会针对传统银行卡支付模式提供任何实质性的安全更新,其更新方式目前也尚未可知。因此还是假定该技术存在不安全性为好。 在LoopPay应用程序内,用户完全可以自行选择是否需要始终发出磁场、或是关闭、还是10分钟或8个小时,或者某一特定时长。而对于LoopPay本身而言,似乎存在可拆卸的硬件组件,并设有传送支付数据的按钮。因此,用户必须对设备发送支付数据的时长进行设置,并按下按钮确认发送。 对于三星而言,似乎MST硬件和发送按钮均内置于启用Samsung Pay的移动设备内。为此我们专门联系了三星想确认这一消息,但公司并未谈及过多其即将发布的支付平台。 然而在一篇新闻中,三星解释说用户将只需从移动设备屏幕的最下面向上滑即可启动Samsung Pay应用程序。用户随后即可从保存在Samsung Pay钱包内的众多银行卡中选择一种支付方式,并通过其移动设备内置的指纹扫描功能确认支付。而其安全方面更令人感兴趣,该篇新闻中似乎还隐含地提到Samsung Pay将借助三星安全的Knox子操作系统来提升其安全性。 如果三星无法在Samsung Pay内加入芯片密码技术的话,他们将不得不以一种过时且不安全的支付模式来应对未来的挑战 对于即将集成的更安全芯片密码技术将如何对依赖于磁条阅读器的技术部署产生影响,目前依然不得而知。LoopPay提供专门针对关于EMV问题的完整常见问题解答。他们的观点似乎是MST与芯片密码一样安全。看看三星是否还有什么其他的计划,这将非常有趣,尤其是考虑到2015年末美国将全面普及芯片密码技术。 如果三星无法在Samsung Pay内加入芯片密码技术的话,他们将不得不以一种过时且不安全的支付模式来应对未来的挑战。除此之外,LoopPay似乎也在赌磁条阅读器将长期使用,但他们根本不知道芯片密码技术将迅速在全美范围普及开来,或者其他的支付机制一旦出现也将极大影响到目前的支付模式。 更加显然的问题是安装后使用的情况。从操作系统到联网恒温控制器:bug都不可避免。我们将不得不在今年夏天等待韩国和美国方面的正式发布。一旦Samsung Pay正式上市,安全研究专家和网络攻击者一定将不遗余力地寻找bug,而我们也将为您带来最新的相关报道。
在我”生物芯片体验之旅”的头两周里,我还有时间细细考虑一些问题。但随着来自社区论坛的各种问题如洪水一般涌来时,我有些应接不暇:一两个问题不会影响到你的思考和专注力,但如果不断有问题和建议向你提出,且长时间持续处在与试验有关的方方面面问题的热烈讨论中,这完全又是另一回事了。有时这些问题会引起激烈的争辩,问题从情绪舒适到宗教话题无所不包。 我从未对自己所做的事后悔过。恰恰相反:如此数量众多的问题以及各式各样的讨论主题,足以证明整个试验活动并非是徒劳的工作–原因在于这一技术的确存在一些争议。为了避免电影《银翼杀手》中的剧情发生在现实生活中,我们必须对这一技术认真地进行改进、重新规定和纠错。 首先,我要说的是有关形状因素的话题。对皮下植入芯片存在的感觉是你第一需要习惯的事情。 事实上我并没有常常感到它的存在。可能在大拇指和食指中间的这个位置并没有太多的神经末梢,或者只能说是手术取得了巨大的成功。芯片似乎已在里面”安了家”,即在这个部位的一小块皱皮内”安居了下来”。 但有时候,我还是能真真切切感觉到它就在我的手里面:例如,在举杠铃或搬杂物的时候就能感觉到它的存在。在这种时候,我能感到芯片在我的手里面向一侧移动,可能向食指方向移动了几毫米。 有时候,在我晚上醒来时,会发现芯片又转移到了另一个位置。这并没有什么问题,因为它可移动的最大距离范围相当于一个5美分硬币的直径。 就这样生活了两周后,我必须做出如下声明:这的确是一个了不起的创意(我将在这一系列专题博文的下一篇中介绍其最初的优点),但我们最应该从根本上改变的事情!—是芯片的形状因素。 我们目前所用的生物芯片外观上看起来像这样: 芯片外壳采用光滑且坚硬的USP级别的生物可相容的玻璃材质,不会引起鲜活肉体的腐坏,保存有带基础逻辑功能的小型电路:读写块和记忆块,可在射频识别接收器范围内被激活。 这意味着芯片必须十分靠近目标装置才能被激活,比如地铁闸道口或信用卡读卡器。 通常情况下芯片工作良好。然而,其形状因素更适合于无缝注射,但如果想在皮肤下存放更长的时间,这并不是一个理想的解决方案。 那应该将芯片植入哪个位置呢,可以问问达·芬奇 事实证明大拇指与食指之间的这个位置并不是植入芯片的最佳区域,因为从实践中看并不太方便日常使用。例如,在穿过地铁闸道口时,我本能地想用拳头或手腕做一个滑动的手势或触碰读卡器。 我起码触碰了各种读卡器超过1000次,我可以肯定地告诉你生物芯片也必须经过与移动应用程序类似的可用性测试以及用户体验试验方能广泛应用,其灵感源于很久以前的”奥卡姆剃刀”原则。关于这一点,我喜欢爱因斯坦曾说过的一句话: “事情应该力求简单,不过不能过于简单。” 在将芯片植入我的手内后,这意味着每次用手刷读卡器时都必须扭动自己的手。因此我们将来的设计必须少用这个变扭的动作。芯片植入的部位必须能实现与眼前或手臂伸展长度距离的任何设备舒适地进行交互作用。我认为达•芬奇在他的传世名作《维特鲁威人》中已给出了暗示。 当我走在地铁、办公楼和购物中心时(该芯片仍然无法作为门卡使用,但读卡器会对它做出反应,这引起了周围人的好奇目光),我终于想出了最适合植入芯片的人体部位: 最方便植入芯片的区域应位于手背的最中心位置。如果芯片能够植入到这个位置,被植入者无论是解锁、在POS机终端支付、与智能手机和平板电脑交互还是进入公共交通闸道口(至少是公交车进入闸道口,不是那种安装在地铁进口的装置)都将十分方便。 #2在我个人列出的芯片最佳植入手部区域清单中,小拇指和手腕之间的位置也成为了首选的方案:如果你握紧拳头的话,你正好可以看到一小块起皱的肉,我认为这个地方适合植入芯片。 #3最方便的芯片植入区域通常位于指关节之间。因此这样的话,想要与读卡器进行交互,你只需本能地轻轻用拳头敲一下即可。 实际中,还没有理想的解决方案。想要大力普及某一个固定植入部位,我们需要统一全球世界的读卡器。 尽管我们正在努力之中,但要真正实现并非易事。我们每个人的身体构造都完全不同:无论是身高,左撇子还是右撇子,四肢不健全或者根本已丧失手臂。 想要迎合各种人群的利益,我们应该植入多块芯片,如此这些芯片才能进行交互并执行各种任务(如同小型的局域网),或芯片应该能在数厘米以外的区域运行。 从技术角度讲,第二种方法看似可行,但需要考虑额外的安全风险:潜在的网络攻击者完全可以通过使用定向天线远程访问芯片之间的共享数据—这一方法已被广泛运用于通过蓝牙的黑客入侵。 如果你试试植入芯片后手拎重物,我担保你一定会选择第一个方案。如果在植入芯片之前有人问你选择哪个方案的话,我猜你也会选择第一个。 生物芯片必须扎根体内 但选择芯片植入位置只是其中的一个问题而已。还记得我曾说过芯片时常会在皮肤下移动吗?这一问题也必须得到解决。通过将所有我的产品管理技巧与创造性的问题解决理论相结合,想出了如下解决方案: 为了使芯片变成绝对的用户友好,必须对它的外形进行改造和调整以满足用户的需求。要实现这一目标主要需要芯片能够随条件的不同而变化: 芯片植入之前和植入过程中; 芯片植入之后;
有一天醒来我发现手上的多了一片创可贴,贴在了我的拇指和食指之间的一个小伤口上。那是我前一天参加跆拳道比赛时留下的伤口。前一天我去哪儿了,在我身上到底发生了什么? 慢慢地,一连串的画面在我的脑中一一浮现:闪光灯、观众的欢呼声、刺鼻的防腐剂味道以及手持特殊注射器的纹身男。 “好吧,再没有任何退路了。你不是想改变这个世界吗,就去做吧!”我这样想着。我最终在短短的几分钟内将NFC生物芯片植入到我的皮肤下面。 没错,这些完全是好莱坞式的电影情节: 但在现实中,远没有那么酷和简单,这是我在此次试验中最先体会到的。为了植入芯片,你需要一支3毫米粗针管的特殊注射器。比医用常规针管要粗得多。 在这过程中不使用任何麻醉剂。注射师给了我一个灿烂的微笑并说了些 “如果你能握紧拳头的话就不会感觉痛。让我们开始吧!”诸如此类的话。当我还在努力理解注射师所说的这些话的时候,我发现注射针管已经扎进了我的手。我好像听到了钢制针管在我皮肤下注射的声音。 整个注射过程仅用了5秒钟都不到。其疼痛感就相当于抽血化验的感觉—手指、血管和屁股同时产生疼痛。所以下一次的话,最好还是进行局部的麻醉(起码喷雾麻醉)为妙。 不错,下次必须使用麻醉剂。显然,与芯片植入技术有关的问题不计其数,如果都写在纸上的话,拼起来的话将比整个银河系的面积还要大。为了解决其中大多数的问题,我们将需要开发新一代的芯片,但必须要基于早期接受者的反馈才能不断更新升级。 为那些非专业领域人士以及第一次听说的人准备的补充说明:就在几天前,在SAS2015峰会上我们将来自全球最顶尖的安全信息专家、领导者以及数名卡巴斯基实验室员工聚集到一起,共同参与皮肤下植入芯片的试验。 一同参与试验的还有两名志愿者:我自己和卡巴斯基实验室欧洲人事部主管Povel Torudd。Povel Torudd是瑞典人,但目前居住在伦敦。 这到底是一块什么样的芯片呢?它是一个极小的(大小仅为12 x 2毫米)微型装置,最多可储存880字节内容,一旦植入后能与周边高科技设备进行交互作用,包括智能手机及其应用程序、笔记本电脑、电子锁、公共交通进入闸道以及各类物联网世界的例子。所有交互过程均采用无线技术,触摸即可启动。 正如往常一样,’植入芯片’的主意是大家在酒吧一边喝酒一边讨论互联网发展的时候定下来的。 从某种意义上说,我可能是第一个受大型机构资助的俄罗斯人生控体,该机构与本次试验的结果有着直接的利益关系。 我和Povel是在SAS2015峰会之前3个月才决定参加’芯片植入’试验的。还是在酒吧:我们坐在一起一边喝着啤酒,一边讨论着互联网的发展。谈论的话题包括:互联网的显著优势以及诸如技术陈旧的一大堆互联网缺点,而陈旧的技术之所以还在使用的原因可以引用尼尔•斯蒂芬森在其《编码宝典》科幻小说中一句最经典的台词’摩多不是那么容易进去的’: 道理很简单,老的技术通常已为大多数人所熟知和了解,且上手操作简单;此外所有目前的电子和软件技术在现有框架内建立和测试。在取得成功的同时,公司的利润空间也已被压缩得很小以至于只有采用量子学技术才能计算出来,而一旦新开发技术发生与老技术不兼容的问题,你的公司将立即被打回原型。 举个例子来说,我们长期以来都使用密码认证的方法,关于所存在的缺陷,所有信息安全行业业内人士都已达成了共识。 在酒吧我们一直畅聊到了深夜,最终做出了这个决定。我们认为现在到了表明立场以及改变世界向更美好方向发展的时候了,而且是以一种激进和大众时尚的方式来展示属于我们自己的创新(假设不会受到所谓30年更新循环期的影响)。并没有任何人强迫或要求我们将芯片植入体内,同样参加此次试验也是毫无报酬和自愿的。 对于生物体与计算机之间的协同效应我深表关切–未来不可避免将面对–这将使仿生学成为高科技的一个分支。问题在于许多现代技术在开发时,不可避免地都疏忽了安全和隐私方面的问题。 这样的例子举不胜数:卡巴斯基实验室欧洲研究人员David Jacoby只花了极短的时间就成功入侵了自己的智能家庭。 然而,一台联网的咖啡机或智能电视根本无法与人类生物体相提并论。我对参与该试验志愿者的要求有两个:一是能够了解该技术的优点,二是能发现其缺点和漏洞。随后通过将一些相关保护方法概念化后,在有生之年将其开发成形。 目前最紧要的工作是如何避免我们的后代成为仿生网络犯罪分子手下的受害者—这样的事情迟早将会发生,统计数据将会告诉我们一切。 从理论上说,大范围应用体内植入芯片依然至停留在想象的阶段。未来不仅可能会被用于打开办公室和家里的大门以及车门,还可管理数字钱包以及无需密码的情况下开启设备(芯片本身可以作为标识符使用)。如果高科技继续高速发展的话,密码保护方法将很快消亡。 此外,植入芯片也可用于重要个人数据的加密存储器,包括:医疗记录、个人档案以及护照资料等内容。其好处不言而喻,一旦这些信息被泄露的话,你就能知道是谁在什么时间以及因为什么原因访问了这些内容–当然是为了个人隐私考虑。 对于我自己来说,还确定了本次试验的五大目标:
9月9日,苹果展示了其最新设备和基于NFC芯片、Touch ID传感器以及Passbook应用的全新支付系统。下面我们将为您介绍这一新系统的操作方法、带来的便利以及安全性。 在加州弗林特剧院举办的本场苹果发布会历时100分钟,向全球展示了苹果即将推出的两个全新产品。发布会后,全球消费者对苹果新产品各抒己见,并像以往一样迅速分成了三派:苹果的产品不再像以前那么优秀了;我们在安卓手机上已经看过这个了;不用说了,我想买!我们并不想卷入这场”网络论战”之中,因为除了屏幕尺寸以及网络论战外,让我们更感兴趣的是由苹果自主研发的全新支付系统- Apple Pay。该系统的使用基于NFC芯片、Touch ID传感器以及Passbook应用,并与信用卡巨头Visa、MasterCard以及Amex进行了合作。苹果想用iPhone手机来完全替代钱包和信用卡的作用,但问题是它的安全性到底如何,是否能够抵御住网络犯罪分子的攻击呢? Apple Pay(苹果公司似乎有意将前缀’I’去掉)是一种移动支付系统,在提供交易过程中结合了一些有趣的技术解决方案。NFC、TouchID和Passbook通过”互相合作”,共同为用户打造了一个更加舒适和安全的购物流程。至少keynote是这么告诉我们的。 那么,这一系统是如何操作的呢?事实上与PayPass卡或PayWave卡使用方法几乎一模一样:你只需将你启用NFC支付的设备靠近阅读器扫一扫,随后再确认交易即可完成操作。就如同每一张信用卡都有各自的PIN码一样,Apple Pay使用的是新iPhone手机的Touch ID扫描器,你只需将手指按压在屏幕上即可完成一笔支付。 尽管Apple Pay看起来的确安全,但将所信用卡片信息保存在iPhone手机内可能又将是一个风险。 在初次使用该系统前,你需要用iPhone手机扫描你的信用卡,如此所有诸如卡号和过期日期这样的信息直接进入Passbook应用。下面将介绍Apple Pay技术中最有趣也是最复杂的一部分。在支付过程中如果不想用自己真实的信用卡或借记卡卡号的话,还可以运用独一无二的设备账号。一旦账号创建,此类令牌将单独分配给一台设备,而卡片信息则安全保存(当然是加密)在新iPhone手机和Apple Watch的专用芯片内。因此你支付时所使用的是无法辨认的专用码,而非你的真实凭证。 该方法的好处至少有两个。首先,在交易过程中,无论商店还是网络犯罪分子(可能会尝试拦截数据)都无法获取你的信用卡或借记卡的卡片信息。最坏情况下,网络攻击者也只是会得到一个令牌号码。第二,就算令牌号码被盗,也没有任何的关系,因为只有在特定设备上传输所创建的号码才能完成交易。一旦设备被盗,还可以凭借Touch ID进行保护。无论如何,你还能通过”Find My iPhone”服务锁定你的iPhone手机或清除保存的所有信息(包括卡片信息)。因此就算手机被盗,也无需锁住信用卡或银行账户来保护你的资金。 但这一系统是否真的安全?卡巴斯基实验室专家Dmitry Bestuzhev指出了问题的关键所在:Touch ID也会有出现问题的时候。这也是为什么苹果依然允许输入PIN码的原因所在。例如,你用湿手指按屏幕的时候Touch ID可能就无法正常工作。而在网络犯罪分子授权支付时,同样的快捷方式也可能会被滥用。需要牢记的是,使用Apple Watch支付并不需要任何额外的交互,因此你的设备可能存在未经你允许而被用于支付的情况发生。 很快你就能单凭# iPhone手机或#Apple Watch进行支付。这样是否安全呢? 还有一个问题:卡片信息存储的方式。正如你所知,几乎各种保存在iPhone手机内数据都可以与许多受信任的iOS设备进行同步。这些数据不单单是照片或者浏览器标签,还有保存在Keychain应用内的密码。因此如果信用卡和借记卡凭证也以同样方式保存的话,一旦启用设备与其它智能手机同步的话,将对你的资金造成极大风险。除此之外,网络攻击者也能进行同样的操作—输入你的密码随后获得你所有的卡片信息,除非苹果想出解决方案使得这一操作难以实施。今年10月份我们将拭目以待,到时候Apple Pay将在全美超过20万家商铺正式上线。我们将不断为您带来这方面的最新消息,请继续关注我们。