人机大战:脸部识别能力

2010年,世界上最大的人脸图像库拥有者— Facebook — 学会了如何区分人像和风景画:社交网站搜索人脸照片并标记这些区域。但有时也会出错。4年后,Facebook识别人脸照片的准确率达到97%:区分是同一个人还是两个人。 尽管Facebook取得了重大进步,但其算法依然在某些方面输给了人脑3个百分点。如果需要在较低分辨率照片里识别熟人,人类一定比计算机做得好。就算这些照片是从非常规角度拍摄。 这的确有些不同寻常,因为通常来说计算机的精确度要远高于人脑。那么问题来了,人类为什么偏偏在这方面比计算机强呢? 我们的大脑经过了严格的训练 科学研究证明,大脑的某个区域专门负责脸部识别。这一区域叫做”梭状回”,是”颞叶”和”枕叶”的一部分。婴儿从出生那一刻起便开始学习如何区分不同的脸,并不断练习这一技能。新生儿在4个月大的时候,大脑就能区分大伯和二伯—二舅妈和三舅妈。 眼睛、颧骨、鼻子、嘴巴和眉毛是面部的主要特征,能帮助我们相互辨认。皮肤也同样重要,尤其是纹理和颜色。值得注意的是,我们的大脑倾向于将面部作为一个整体来处理— 主要是因为无法专注于个别特征。因此,有一半脸用围巾或纸头遮住,我们也能轻松认出。但如果将不同人的照片拼贴到一起,并加入2个名人的人脸照片,观察者则往往需要一定时间才能认出。 上图是布拉德·皮特和安吉丽娜·朱莉的合成照 由于从出生那刻起大脑就开始存储人脸。我们慢慢开始创造出一个模版,用来进行人脸处理。如果将这一模版画下来的话,看上去就像这样: 一旦我们大脑开始将某个人的外貌和固定模版进行比较时,人脸处理即自动开始:这人的鼻子是否更宽些、嘴唇是否更丰满还有肤色是暖色还是冷色调等等。有些不太常出国旅行的人常常会说某个国家的人都长得差不多。之所以有这样的感觉,是因为他们大脑中的模版对脸部特征相当敏感,但对周遭环境却不那么敏感。 顺便提下,有些动物(比如:狗和猴子)同样能区分不同的脸。尽管通过嗅觉能带来许多信息,但视觉图像同样有助于识别其它动物。有趣的是,人类最好的朋友—狗—不仅能通过看我们的脸掌握人的情绪,还能学会如何微笑。 计算机是如何识别人脸的? 微笑和脸部处理之间到底有何联系?这两个之间是不可分割的,因为任何表情的变化都会让我们的脸瞬间变样而无法识别,对于计算机算法而言更是如此。 软件可以将两张正面脸部照进行比较,并确定是否为同一人。这些解决方案的工作模式类似于人像画家:通过分析人脸上所谓的”节点”。这些点被用来确定每一张单独脸;不同的方法可以从一张脸上找出80-150个节点不等。 例如,无论是画家还是软件都会测量两眼之间的距离、鼻子的宽度、眼窝的深度、颧骨的形状以及下巴轮廓的长度等等。 一旦你改变视平线或要求模特转一下头,这些测量结果也会发生变化。由于许多脸部处理算法只能分析二维照片,因此视点成为了识别精确度的关键所在。你希望一直”隐姓埋名”吗?用太阳眼镜遮住自己的眼睛和颧骨,再用围巾盖住下巴和嘴巴,如此才能隐藏自己的身份。在我们测试名声不佳的FindFace服务时发现,它只能识别正面人像。 由于此类脸部识别服务只能辨认”平面照片”,因此你完全可以”愚弄”它们一番。但可谓好景不长,更加先进计算机算法正在研发之中。 未来发展动态 随着我们年龄的增长,大脑处理人脸的能力也在不断得到训练。区分”我们”和”他们”的能力,是人类生存的必要技能之一。最新计算机也能像人类一样学习,并自行编程。为了提高机器脸部处理的准确率,开发人员采用了自我学习算法,并将数百张人像照片打包编成教科书供计算机学习。这些照片其实并不难找到—互联网、社交媒体、照片寄存网站、图库和其它网络资源中都可以找到。 而随着计算机算法开始采用3D模型,脸部识别技术工作得以更加有效。通过将网格映射到面部并整合人头像的视频捕捉,软件就能得到某人多个角度的面部特征。顺便提下,人类大脑的模版也是三维的。尽管这一技术仍在开发之中,但目前市场上已出现了多个专利解决方案。 模拟研究也将从中受益。对人物情绪的真实渲染始终是电子游戏行业的一座金矿,许多工作都是在努力让自己的游戏角色看上去更加真实。事实上,许多工作已经在进行中。相同的技术对于脸部识别软件而言也同样重要—一旦这些解决方案需涉及模拟人类的方面,他们就会知道照片里男孩的笑脸,是因为在街上牵着女孩的手。 除了3D模型外,开发者还致力于其它方面的研发,例如:Identix公司就设计了一种用于脸部识别的生物认证技术- FaceIt Argus。它能分析皮肤纹理的独特性:线条、毛孔和疤痕等等。FaceIt Argus的作者们还宣称他们的研发成果还能用来区分双胞胎,但很可能不只使用了脸部识别软件。 据说这一系统对脸部表情变化并不敏感(比如:眨眼、皱眉或微笑),并且即使长胡子和戴眼镜也能成功分辨。如果将FaceIt Argus与其它脸部处理系统结合使用的话,准确率还可提高20-25个百分点。但另一方面,如果照片的分辨率和亮度都很低的话,这一技术就无法成功使用。

2010年,世界上最大的人脸图像库拥有者— Facebook — 学会了如何区分人像和风景画:社交网站搜索人脸照片并标记这些区域。但有时也会出错。4年后,Facebook识别人脸照片的准确率达到97%:区分是同一个人还是两个人。

尽管Facebook取得了重大进步,但其算法依然在某些方面输给了人脑3个百分点。如果需要在较低分辨率照片里识别熟人,人类一定比计算机做得好。就算这些照片是从非常规角度拍摄。

这的确有些不同寻常,因为通常来说计算机的精确度要远高于人脑。那么问题来了,人类为什么偏偏在这方面比计算机强呢?

我们的大脑经过了严格的训练

科学研究证明,大脑的某个区域专门负责脸部识别。这一区域叫做”梭状回”,是”颞叶”和”枕叶”的一部分。婴儿从出生那一刻起便开始学习如何区分不同的脸,并不断练习这一技能。新生儿在4个月大的时候,大脑就能区分大伯和二伯—二舅妈和三舅妈。

眼睛、颧骨、鼻子、嘴巴和眉毛是面部的主要特征,能帮助我们相互辨认。皮肤也同样重要,尤其是纹理和颜色。值得注意的是,我们的大脑倾向于将面部作为一个整体来处理— 主要是因为无法专注于个别特征。因此,有一半脸用围巾或纸头遮住,我们也能轻松认出。但如果将不同人的照片拼贴到一起,并加入2个名人的人脸照片,观察者则往往需要一定时间才能认出。

上图是布拉德·皮特和安吉丽娜·朱莉的合成照

由于从出生那刻起大脑就开始存储人脸。我们慢慢开始创造出一个模版,用来进行人脸处理。如果将这一模版画下来的话,看上去就像这样:

一旦我们大脑开始将某个人的外貌和固定模版进行比较时,人脸处理即自动开始:这人的鼻子是否更宽些、嘴唇是否更丰满还有肤色是暖色还是冷色调等等。有些不太常出国旅行的人常常会说某个国家的人都长得差不多。之所以有这样的感觉,是因为他们大脑中的模版对脸部特征相当敏感,但对周遭环境却不那么敏感。

顺便提下,有些动物(比如:狗和猴子)同样能区分不同的脸。尽管通过嗅觉能带来许多信息,但视觉图像同样有助于识别其它动物。有趣的是,人类最好的朋友—狗—不仅能通过看我们的脸掌握人的情绪,还能学会如何微笑。

计算机是如何识别人脸的?

微笑和脸部处理之间到底有何联系?这两个之间是不可分割的,因为任何表情的变化都会让我们的脸瞬间变样而无法识别,对于计算机算法而言更是如此。

软件可以将两张正面脸部照进行比较,并确定是否为同一人。这些解决方案的工作模式类似于人像画家:通过分析人脸上所谓的”节点”。这些点被用来确定每一张单独脸;不同的方法可以从一张脸上找出80-150个节点不等。

例如,无论是画家还是软件都会测量两眼之间的距离、鼻子的宽度、眼窝的深度、颧骨的形状以及下巴轮廓的长度等等。

一旦你改变视平线或要求模特转一下头,这些测量结果也会发生变化。由于许多脸部处理算法只能分析二维照片,因此视点成为了识别精确度的关键所在。你希望一直”隐姓埋名”吗?用太阳眼镜遮住自己的眼睛和颧骨,再用围巾盖住下巴和嘴巴,如此才能隐藏自己的身份。在我们测试名声不佳的FindFace服务时发现,它只能识别正面人像。

由于此类脸部识别服务只能辨认”平面照片”,因此你完全可以”愚弄”它们一番。但可谓好景不长,更加先进计算机算法正在研发之中。

未来发展动态

随着我们年龄的增长,大脑处理人脸的能力也在不断得到训练。区分”我们”和”他们”的能力,是人类生存的必要技能之一。最新计算机也能像人类一样学习,并自行编程。为了提高机器脸部处理的准确率,开发人员采用了自我学习算法,并将数百张人像照片打包编成教科书供计算机学习。这些照片其实并不难找到—互联网、社交媒体、照片寄存网站、图库和其它网络资源中都可以找到。

而随着计算机算法开始采用3D模型,脸部识别技术工作得以更加有效。通过将网格映射到面部并整合人头像的视频捕捉,软件就能得到某人多个角度的面部特征。顺便提下,人类大脑的模版也是三维的。尽管这一技术仍在开发之中,但目前市场上已出现了多个专利解决方案。

模拟研究也将从中受益。对人物情绪的真实渲染始终是电子游戏行业的一座金矿,许多工作都是在努力让自己的游戏角色看上去更加真实。事实上,许多工作已经在进行中。相同的技术对于脸部识别软件而言也同样重要—一旦这些解决方案需涉及模拟人类的方面,他们就会知道照片里男孩的笑脸,是因为在街上牵着女孩的手。

除了3D模型外,开发者还致力于其它方面的研发,例如:Identix公司就设计了一种用于脸部识别的生物认证技术- FaceIt Argus。它能分析皮肤纹理的独特性:线条、毛孔和疤痕等等。FaceIt Argus的作者们还宣称他们的研发成果还能用来区分双胞胎,但很可能不只使用了脸部识别软件。

据说这一系统对脸部表情变化并不敏感(比如:眨眼、皱眉或微笑),并且即使长胡子和戴眼镜也能成功分辨。如果将FaceIt Argus与其它脸部处理系统结合使用的话,准确率还可提高20-25个百分点。但另一方面,如果照片的分辨率和亮度都很低的话,这一技术就无法成功使用。

因此不管怎么说,最终还是用了其它技术。卡尔斯鲁厄理工学院(德国)的计算机科学家们研发出了新的技术,能够识别在光线不足或黑暗条件下拍摄的红外人像照片。

该技术能分析人体热特征,并将红外或远红外线照片与普通照片进行比较,准确率最高可达80%。使用照片的数量越多,计算机算法的成功率就越高。但如果只有可见光照片时,准确率将降至55%。

进行此类匹配并不像看上去那么容易:问题在于常光和红外光下的脸部毫无线性相关。由于照片是基于热辐射成像,因此看起来有别于日光条件下拍的照片。

热辐射强度取决于皮肤和周遭的温度,甚至是被拍摄者的情绪。此外,通常来说红外照片的分辨率要低于常规照片,因此也导致分辨的困难更大。

为解决这一难题,科学家们转而向学习相关算法的机器求助,并向计算机系统提供了82人的1586张照片。

脸部识别几乎无处不在!

如今,脸部识别技术几乎遍布全球。最近优步就在中国推出了类似的解决方案,以加强对自家出租车司机的管理。NEC和微软就将脸部处理和物联网完美结合,从而让营销专家们深入、再深入地了解他们的客户。与此同时,来自俄罗斯2ch.ru网站的网络小白们却用脸部识别服务在线攻击色情女星。

开发脸部识别技术不得不让我们重新考虑个人隐私问题。就算目前或者今年没有太大改变,但现在是时候做足准备了。毕竟,没有人能换掉脸,不是吗?

如果你怀疑该项技术最终是否真会侵犯到个人隐私,我们建议你观看英国的迷你剧《黑镜》系列,尤其是《Fifteen Million Merits》这一集。

提示