量子计算机及安全性的终结

早已在30年前,就已出现量子计算及量子通信概念;当时科学杂志拒绝发布任何有关此类主题的早期资料。其原因在于,量子计算及量子通信概念给人的感觉更像是科幻小说。现如今,我们已在现实中拥有量子系统;部分量子系统已进入商业销售阶段。量子计算机的出现为安全保护领域提出了需要解决的新问题(主要为加密问题)。   我们生活在充满无线电电波信号及电磁信号的世界中:Wi-Fi、GSM、卫星电视、GPS、FM调频、高速摄像机仅为我们日常生活中利用电磁波的若干实例而已。当然,计算机是该生态系统的重要组成部分之一,其主要形式为主机、笔记本电脑或只能手机。电磁信号的一项重要特征是具有可测量性。我们可在未对电磁信号做出改变的条件下,容易读取电磁信号的所有参数;而这也是为何现如今的上述科技需要实施加密保护的准确原因所在。通过加密,可为需传输的信息提供保护,以便于信息的读取及防止第三方篡改信息。通常情况下,实施通信的相关各方仅可使用唯一的渠道实现语音通信。加密系统的开发者们出色的解决了这一复杂的难题——在所有实施通信的相关人员都可彼此观察对方的条件下,如何妥善处理秘密信息加密密钥的传输问题。该问题的解决方案是所有现代安全保护系统的基础,而量子计算机可能会打破现状。量子密码是否会成为下一代安全解决方案?让我们拭目以待。 标语 名称”量子计算”及”量子密码”可以准确描述相对应的系统。此类系统的基础在于,微粒相互叠加及相互联系中产生的量子影响。 量子计算机无法解决绝大多数日常问题,但利用量子计算机可以快速解决现代加密算法中的一些数学问题。 量子计算机无法解决绝大多数日常问题,但利用量子计算机可以快速解决现代加密算法中的一些数学问题。对于因诸多理由希望窃听其同学Facebook会话的每个年龄仅为十几岁的黑客来说,其书桌上不会出现量子计算机的踪影。创建一台全范围的量子计算机设计多许多工程难题,部分专家认为实际上我们无法解决此类工程难题。最主要的挑战为确保量子位处于相互联系状态,其外因在于每个量子系统都趋向于回归至传统计算机状态(缺乏有价值且无法确定的属性)。在这里,我们不可避免的需要提及长期未决的”薛定谔的猫”这一问题,薛定谔的猫无法同时处于死亡及活着两种状态——但是,对于量子计算机来说,必须在长时间内保持这一奇迹般的状态,以拥有实施结果计算及测量所需的足够时间。现代量子计算机原型机可在若干毫秒(在部分实验中,可在两秒内)保持这一状态。当量子位计数数量增加时,该任务将变得更为复杂。为破解密码系统,计算机必须拥有500-2000个量子位(具体数量取决于算法及密钥长度),但现代量子计算机在最大限度下,仅可实施14个量子位的操作。这也是为何现如今的量子计算机无法用于破解您SSL证书的原因所在,但该状况可能在5年内发生改变。     所有的量子都处于上图右侧的白盒中     深度剖析:SSL、HTTPS、VPN等现代化系统的核心在于,使用密钥及对称算法实施加密的传统型加密数据。对于加密信息发送者及接受者(因此称为对称算法)来说,都在会话开始时,使用另一种非对称式密码系统,协商创建密钥。鉴于非对称算法的计算量非常大,因此仅在密钥协商进程中使用非对称算法。非对称密码系统安全性的基础是,需解决一些复杂的数学问题,如大量数值的整数分解(RSA算法)。对于如此大量数据的乘法或除法运算,将需要花费极为可观的时间,而结果仅是试图使结果按照顺序排序。因此密码系统的设置假设为:间谍可以通过网络连接实施窃听,但间谍需要耗费合理范围之外的时间量(给予密钥长度的不同,可能需要数千万年的时间)计算密钥及解密消息。事实证明,量子计算机可以在此方面提供帮助。使用索尔算法,量子计算机可快速达到所需解决数学问题的最终状态,其速度之快类型于普通计算机计算两个数值之间的乘法。尽管存在一些其他问题(诸如,需要数次执行相同的任务,及在传统计算机帮助下读取结果等),但量子计算机可能非常快速的寻找到所需的大值,进而帮助攻击者计算密钥及解密消息。 另外,无任何缺陷且功能良好的对称算法(如,AES)也可加速暴力破解进程。根据估计结果,在量子计算机上暴力皮接256位的AES密钥速度,等同于在传统计算机上暴力破解128位AES,因此安全水平依然很高。 问题的症结所在 对于因诸多理由希望窃听其同学Facebook会话的每个年龄仅为十几岁的黑客来说,其书桌上不会出现量子计算机的踪影。创建一台全范围的量子计算机设计多许多工程难题,部分专家认为实际上我们无法解决此类工程难题。最主要的挑战为确保量子位处于相互联系状态,其外因在于每个量子系统都趋向于回归至传统计算机状态(缺乏有价值且无法确定的属性)。在这里,我们不可避免的需要提及长期未决的”薛定谔的猫”这一问题,薛定谔的猫无法同时处于死亡及活着两种状态——但是,对于量子计算机来说,必须在长时间内保持这一奇迹般的状态,以拥有实施结果计算及测量所需的足够时间。现代量子计算机原型机可在若干毫秒(在部分实验中,可在两秒内)保持这一状态。当量子位计数数量增加时,该任务将变得更为复杂。为破解密码系统,计算机必须拥有500-2000个量子位(具体数量取决于算法及密钥长度),但现代量子计算机在最大限度下,仅可实施14个量子位的操作。这也是为何现如今的量子计算机无法用于破解您SSL证书的原因所在,但该状况可能在5年内发生改变。 绝大多数理论科学家都需要使用普通或专业级地薛定谔的猫理论——”生活大爆炸”中的佩妮及谢尔顿 达到量子目标的步骤 在此背景下,加拿大的D-Wave公司大胆宣称,其已制造出512量子位的量子计算机;并且,其公司的量子计算机设备已开始在市场中出售。许多专家声称,D-Wave公司的计算机并非”实际意义”上的量子计算机。其原因在于,该公司的产品使用量子退火影响,并且无法证明该公司的产品完全具有量子计算机属性。尽管如此,伴随着科学界的激烈争论,D-Wave公司却挣得丰厚的利润。该公司的客户(诸如,军事任务承包商洛克希德 ·马丁公司及搜索巨头谷歌公司)愿意支付1000万美元购买D-Wave公司的量子计算机设备。在争议满天飞的背景下,该公司的计算机产品确实可以解决特定子集的优化任务,这使得该公司的计算机产品具有量子性质,并可为客户带来实际价值。谷歌公司计划使用D-Wave公司的计算机实施认知实验,洛克希德 ·马丁公司认为,针对F-35喷气式战斗机中所使用的软件,量子计算机具有发现此类软件源代码中现存错误的能力。D-Wave公司的科学家承认,该公司的计算机尚不具有解决其他”量子”任务(如,上文中所述的整数分解)的能力,因此该公司的计算机尚不能对现代的加密算法造成任何威胁。但是,当前存在的另一威胁是:真正意义及功能性的量子计算机已激起大公司及政府的投资热情,此类大公司及政府将在量子开发方面投入更多的资金,加速创建另一种具有加密功能的量子计算机。 D-Wave Two——量子计算机退火器 量子密码 非常有趣的是,量子物理或许可针对该威胁提供解决方法。从理论上来说,如果基于单微粒状态下的连接,完全不可能实现窃听——量子物理法则表明,当测量一个微粒参数时,将导致另一参数的改变。该现象【亦即大家熟知的观察者效应(并经常被人们和不确定性原理所混淆)】,应可解决主要的”传统”通信问题——亦即可能被窃听的问题。每个针对通信所实施的间谍行为都将改变处于传输状态的消息。 每个针对通信所实施的间谍行为都将改变处于传输状态的消息。 每个针对通信所实施的间谍行为都将改变处于传输状态的消息。 在量子通信中,如果出现显著的干扰则意味着通信进程中存在第三方监测连接。当然,您希望防止信息出现泄漏,并希望在出现第三方监测时候,可以立即了解该状况。这也是为何现代量子密码系统仅使用”量子”通信渠道,实施会话加密密钥协商进程的原因所在。此类加密密钥可用于加密通过传统渠道传输的信息。因此,会话各方可以拒绝潜在可能已被拦截的密钥,并通过协商的方式生成新密钥,直至传输状态不再被改变为止。我们可以看到,量子密钥分布(QKD)系统将可起到和非对称密码算法相同的作用,而量子攻击也将随之而来。 Cerberis装置——商业可行的量子密钥分配系统 和量子计算机不同,量子密码系统早已成为商业可行的产品。在量子密码系统方面,首次科学研究出现于1980年左右,但该系统却快速应用于实际实施进程。1989年,量子密码系统完成首次实验室测试,在上世纪末期,市场中可购买的量子密码系统已具有在30英里长的光纤中,传输加密密钥的能力。id

早已在30年前,就已出现量子计算及量子通信概念;当时科学杂志拒绝发布任何有关此类主题的早期资料。其原因在于,量子计算及量子通信概念给人的感觉更像是科幻小说。现如今,我们已在现实中拥有量子系统;部分量子系统已进入商业销售阶段。量子计算机的出现为安全保护领域提出了需要解决的新问题(主要为加密问题)。

 

我们生活在充满无线电电波信号及电磁信号的世界中:Wi-Fi、GSM、卫星电视、GPS、FM调频、高速摄像机仅为我们日常生活中利用电磁波的若干实例而已。当然,计算机是该生态系统的重要组成部分之一,其主要形式为主机、笔记本电脑或只能手机。电磁信号的一项重要特征是具有可测量性。我们可在未对电磁信号做出改变的条件下,容易读取电磁信号的所有参数;而这也是为何现如今的上述科技需要实施加密保护的准确原因所在。通过加密,可为需传输的信息提供保护,以便于信息的读取及防止第三方篡改信息。通常情况下,实施通信的相关各方仅可使用唯一的渠道实现语音通信。加密系统的开发者们出色的解决了这一复杂的难题——在所有实施通信的相关人员都可彼此观察对方的条件下,如何妥善处理秘密信息加密密钥的传输问题。该问题的解决方案是所有现代安全保护系统的基础,而量子计算机可能会打破现状。量子密码是否会成为下一代安全解决方案?让我们拭目以待。

标语

名称”量子计算”及”量子密码”可以准确描述相对应的系统。此类系统的基础在于,微粒相互叠加及相互联系中产生的量子影响。

量子计算机无法解决绝大多数日常问题,但利用量子计算机可以快速解决现代加密算法中的一些数学问题。

量子计算机无法解决绝大多数日常问题,但利用量子计算机可以快速解决现代加密算法中的一些数学问题。对于因诸多理由希望窃听其同学Facebook会话的每个年龄仅为十几岁的黑客来说,其书桌上不会出现量子计算机的踪影。创建一台全范围的量子计算机设计多许多工程难题,部分专家认为实际上我们无法解决此类工程难题。最主要的挑战为确保量子位处于相互联系状态,其外因在于每个量子系统都趋向于回归至传统计算机状态(缺乏有价值且无法确定的属性)。在这里,我们不可避免的需要提及长期未决的”薛定谔的猫”这一问题,薛定谔的猫无法同时处于死亡及活着两种状态——但是,对于量子计算机来说,必须在长时间内保持这一奇迹般的状态,以拥有实施结果计算及测量所需的足够时间。现代量子计算机原型机可在若干毫秒(在部分实验中,可在两秒内)保持这一状态。当量子位计数数量增加时,该任务将变得更为复杂。为破解密码系统,计算机必须拥有500-2000个量子位(具体数量取决于算法及密钥长度),但现代量子计算机在最大限度下,仅可实施14个量子位的操作。这也是为何现如今的量子计算机无法用于破解您SSL证书的原因所在,但该状况可能在5年内发生改变。

 

Screen Shot 2013-12-19 at 12.47.17 PM

 

所有的量子都处于上图右侧的白盒中

 

 

深度剖析:SSLHTTPSVPN等现代化系统的核心在于,使用密钥及对称算法实施加密的传统型加密数据。对于加密信息发送者及接受者(因此称为对称算法)来说,都在会话开始时,使用另一种非对称式密码系统,协商创建密钥。鉴于非对称算法的计算量非常大,因此仅在密钥协商进程中使用非对称算法。非对称密码系统安全性的基础是,需解决一些复杂的数学问题,如大量数值的整数分解(RSA算法)。对于如此大量数据的乘法或除法运算,将需要花费极为可观的时间,而结果仅是试图使结果按照顺序排序。因此密码系统的设置假设为:间谍可以通过网络连接实施窃听,但间谍需要耗费合理范围之外的时间量(给予密钥长度的不同,可能需要数千万年的时间)计算密钥及解密消息。事实证明,量子计算机可以在此方面提供帮助。使用索尔算法,量子计算机可快速达到所需解决数学问题的最终状态,其速度之快类型于普通计算机计算两个数值之间的乘法。尽管存在一些其他问题(诸如,需要数次执行相同的任务,及在传统计算机帮助下读取结果等),但量子计算机可能非常快速的寻找到所需的大值,进而帮助攻击者计算密钥及解密消息。

另外,无任何缺陷且功能良好的对称算法(如,AES)也可加速暴力破解进程。根据估计结果,在量子计算机上暴力皮接256位的AES密钥速度,等同于在传统计算机上暴力破解128AES,因此安全水平依然很高。

问题的症结所在

对于因诸多理由希望窃听其同学Facebook会话的每个年龄仅为十几岁的黑客来说,其书桌上不会出现量子计算机的踪影。创建一台全范围的量子计算机设计多许多工程难题,部分专家认为实际上我们无法解决此类工程难题。最主要的挑战为确保量子位处于相互联系状态,其外因在于每个量子系统都趋向于回归至传统计算机状态(缺乏有价值且无法确定的属性)。在这里,我们不可避免的需要提及长期未决的”薛定谔的猫”这一问题,薛定谔的猫无法同时处于死亡及活着两种状态——但是,对于量子计算机来说,必须在长时间内保持这一奇迹般的状态,以拥有实施结果计算及测量所需的足够时间。现代量子计算机原型机可在若干毫秒(在部分实验中,可在两秒内)保持这一状态。当量子位计数数量增加时,该任务将变得更为复杂。为破解密码系统,计算机必须拥有500-2000个量子位(具体数量取决于算法及密钥长度),但现代量子计算机在最大限度下,仅可实施14个量子位的操作。这也是为何现如今的量子计算机无法用于破解您SSL证书的原因所在,但该状况可能在5年内发生改变。

Screen Shot 2013-12-19 at 12.49.39 PM

绝大多数理论科学家都需要使用普通或专业级地薛定谔的猫理论——”生活大爆炸”中的佩妮及谢尔顿

达到量子目标的步骤

在此背景下,加拿大的D-Wave公司大胆宣称,其已制造出512量子位的量子计算机;并且,其公司的量子计算机设备已开始在市场中出售。许多专家声称,D-Wave公司的计算机并非”实际意义”上的量子计算机。其原因在于,该公司的产品使用量子退火影响,并且无法证明该公司的产品完全具有量子计算机属性。尽管如此,伴随着科学界的激烈争论,D-Wave公司却挣得丰厚的利润。该公司的客户(诸如,军事任务承包商洛克希德 ·马丁公司及搜索巨头谷歌公司)愿意支付1000万美元购买D-Wave公司的量子计算机设备。在争议满天飞的背景下,该公司的计算机产品确实可以解决特定子集的优化任务,这使得该公司的计算机产品具有量子性质,并可为客户带来实际价值。谷歌公司计划使用D-Wave公司的计算机实施认知实验,洛克希德 ·马丁公司认为,针对F-35喷气式战斗机中所使用的软件,量子计算机具有发现此类软件源代码中现存错误的能力。D-Wave公司的科学家承认,该公司的计算机尚不具有解决其他”量子”任务(如,上文中所述的整数分解)的能力,因此该公司的计算机尚不能对现代的加密算法造成任何威胁。但是,当前存在的另一威胁是:真正意义及功能性的量子计算机已激起大公司及政府的投资热情,此类大公司及政府将在量子开发方面投入更多的资金,加速创建另一种具有加密功能的量子计算机。

Screen Shot 2013-12-19 at 12.50.19 PM

D-Wave Two——量子计算机退火器

量子密码

非常有趣的是,量子物理或许可针对该威胁提供解决方法。从理论上来说,如果基于单微粒状态下的连接,完全不可能实现窃听——量子物理法则表明,当测量一个微粒参数时,将导致另一参数的改变。该现象【亦即大家熟知的观察者效应(并经常被人们和不确定性原理所混淆)】,应可解决主要的”传统”通信问题——亦即可能被窃听的问题。每个针对通信所实施的间谍行为都将改变处于传输状态的消息。

每个针对通信所实施的间谍行为都将改变处于传输状态的消息。

每个针对通信所实施的间谍行为都将改变处于传输状态的消息。

在量子通信中,如果出现显著的干扰则意味着通信进程中存在第三方监测连接。当然,您希望防止信息出现泄漏,并希望在出现第三方监测时候,可以立即了解该状况。这也是为何现代量子密码系统仅使用”量子”通信渠道,实施会话加密密钥协商进程的原因所在。此类加密密钥可用于加密通过传统渠道传输的信息。因此,会话各方可以拒绝潜在可能已被拦截的密钥,并通过协商的方式生成新密钥,直至传输状态不再被改变为止。我们可以看到,量子密钥分布(QKD)系统将可起到和非对称密码算法相同的作用,而量子攻击也将随之而来。

Screen Shot 2013-12-19 at 12.51.15 PM

Cerberis装置——商业可行的量子密钥分配系统

和量子计算机不同,量子密码系统早已成为商业可行的产品。在量子密码系统方面,首次科学研究出现于1980年左右,但该系统却快速应用于实际实施进程。1989年,量子密码系统完成首次实验室测试,在上世纪末期,市场中可购买的量子密码系统已具有在30英里长的光纤中,传输加密密钥的能力。id Quantique及MagiQ技术公司已开始出售盒式QKD系统。该系统的安装极为简单,网络技术员即可完成QKD系统的安装进程。除政府及军事机构外,QKD的用户还包括跨国公司、银行等,甚至FIFA也是QKD的用户之一。

完美的保护?

从理论上说,量子通信系统可完全禁止秘密窃听行为,但当前的实施结果表明,该系统仍存在一些缺点。首先,为避免出现干扰或允许长距离的传输,该系统可传输多个光子。当然,开发商尽可能的将光子传输数量保持在最低状态,但从理论上来说,仍存在截获1个光子,并在无需触及其他光子,对已截获的光子实施分析的可能。其次,当前系统的传输存在距离限制(约为100英里),这就使得当前系统的使用范围非常有限。在无”重复器”装置的条件下,地理位置相距较远的分支机构无法使用该系统实施通信,而”重复器”明显将可能能为中间人攻击的攻击点。

在理想状态下,量子密码系统无懈可击;但在现实生活中,却无法达到这种状态。这也是为何现在抛弃传统保护措施为时过早的原因所在。

在理想状态下,量子密码系统无懈可击;但在现实生活中,却无法达到这种状态。这也是为何现在抛弃传统保护措施为时过早的原因所在。

第三,现在已出现物理学家领域内的黑客。此类黑客可通过功能强大的激光,使光电探测器”致盲”,并可操纵光电探测器的读数,进而具有操纵QKD系统中所有类型数据的能力。所有此类状况都属于实施缺陷问题。尽管如此,此类状况还已清晰表明,量子系统绝对不可能会成为银色子弹,并且不可能对传输的数据提供保护;即便是在物理领域而非数学领域内实施该系统,在未来数十年内上述问题依然存在。另外一件事情是,和现有技术不同,量子设备在未来多年内仍处于专业公司垄断状态,您不太可能会遇到像当前Wi-Fi装置或智能手机那样,在每个办公室或每个部门中都会看到数十台不同量子设备的状况。这也是为何当前抛弃经典数学加密系统为时过早的原因所在。当前的加密系统可用于任何物理通信渠道。在未来的数十年内,市场对当前加密系统的需求仍将维持在较高水平。尽管如此,对于量子计算来说,当前仍需要开发信算法,并使量子计算更具耐久性。

 

 

 

保护您在线游戏用户资料的5个小技巧

游戏行业发展已有数十年的历史。在其发展历史中,游戏行业一直随着人们在科技方面所取得的新科技进步,为我们提供不断改善的游戏方式。计算机游戏从开始阶段简单的单一用户计算机游戏活动,现已成长为可通过利用跨平台游戏方式,提供多人游戏体验且可将游戏玩家带入另一虚拟国度,并可允许全球范围内游戏玩家访问的游戏活动。鉴于当前我们通过互联网接入进行游戏活动,因此和以前相比,保持游戏期间的自身防护警惕性变得更为重要。这也是我们编辑保护您在线游戏用户资料5个首选小技巧的原因所在。 1.请勿点击未知链接 大多数多人游戏依靠互联网为玩家提供访问服务。如你所知,该服务方式也同时产生一系列不受欢迎的问题。和任何其他网站相同,游戏网站同样是黑客试图捕获不知情受害者的温床。许多游戏网站使用即时消息工具或电子邮件,实现游戏玩家之间的互动,但在此类聊天系统中却隐藏着潜在风险。请切勿点击其它游戏用户提供的链接,或打开其它游戏用户发送的文件附件,其原因在于,此类链接或文件附件可能是恶意链接或恶意文件附件。同样,您需要确保在未实现验证软件合法性之前,切勿下载任何可能会对您所使用的系统造成危害的新软件。 2.自我保护 使用昵称;请不要使用您的真实姓名或地址。您应当仅将熟悉的朋友作为语音聊天对象。 3.使用安全性强的密码 无论怎样强调使用安全性强的密码的重要性都不嫌过分。请务必确保您所连接的无线安全网络为受您信任且已使用密码加以保护的无线网络。如果您在旅途中,则请考虑使用VPN保护个人数据的安全。另外,对于您已保存用户文件的每个网站来说,请确保使用各种复杂且单独使用的密码。如果您在游戏网站上的个人数据遭到破坏,那么您最不愿意看到的事情就是黑客可根据你共享的登陆安全密码,获取游戏网站中有关您自身的其他个人信息。 请务必确保您所连接的无线安全网络为受您信任且已使用密码加以保护的无线网络。如果您在旅途中,则请考虑使用VPN保护个人数据的安全。 4.仅使用官方渠道 在讨论游戏中的问题时,请仅使用官方网站及官方支持的渠道。诈骗者经常通过在线字符阻断/禁止等手段,诱使您安装恶意软件或共享您的登陆密码。此类诈骗者经常将自己伪装为游戏管理员。请通过输入游戏网站地址并查询支持内容,对此类安装软件或共享密码的要求实施检查。 请务必确保您所连接的无线安全网络为受您信任且已使用密码加以保护的无线网络。如果您在旅途中,则请考虑使用VPN保护个人数据的安全。 5.使用杀毒软件 安全性最好的自我防护方法为使用已获得您个人信任的杀毒软件。卡巴斯基互联网安全套件2014,可针对最新的恶意软件及互联网威胁为您提供保护,并可使您或您的家庭成员可以安心在线活动。 只要遵循上述小技巧,那么当您在线访问游戏网站时将可获得更多的安全保护。那么,我们还在等什么呢?开始游戏吧!

提示